Glacial cooling and climate sensitivity revisited – Nature.com

  • 1.

    CLIMAP Project Members The surface of the Ice-Age Earth. Science 191, 1131–1137 (1976).


    Google Scholar
     

  • 2.

    MARGO Project Members Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nat. Geosci. 2, 127–132 (2009).


    Google Scholar
     

  • 3.

    Charney, J. G. et al. Carbon Dioxide and Climate: A Scientific Assessment (National Academy of Sciences, 1979).

  • 4.

    Knutti, R. & Hegerl, G. C. The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nat. Geosci. 1, 735–743 (2008).

    CAS 

    Google Scholar
     

  • 5.

    Joussaume, S. & Taylor, K. Status of the Paleoclimate Modeling Intercomparison Project (PMIP) (WMO, 1995).

  • 6.

    Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).


    Google Scholar
     

  • 7.

    Schmittner, A. et al. Climate sensitivity estimated from temperature reconstructions of the Last Glacial Maximum. Science 334, 1385–1388 (2011).

    CAS 

    Google Scholar
     

  • 8.

    Mix, A. C., Morey, A. E., Pisias, N. G. & Hostetler, S. W. Foraminiferal faunal estimates of paleotemperature: circumventing the no-analog problem yields cool ice age tropics. Paleoceanography 14, 350–359 (1999).


    Google Scholar
     

  • 9.

    Crowley, T. CLIMAP SSTs re-revisited. Clim. Dynam. 16, 241–255 (2000).


    Google Scholar
     

  • 10.

    Ballantyne, A., Lavine, M., Crowley, T., Liu, J. & Baker, P. Meta-analysis of tropical surface temperatures during the Last Glacial Maximum. Geophys. Res. Lett. 32, L05712 (2005).


    Google Scholar
     

  • 11.

    Telford, R., Li, C. & Kucera, M. Mismatch between the depth habitat of planktonic foraminifera and the calibration depth of SST transfer functions may bias reconstructions. Clim. Past 9, 859–870 (2013).


    Google Scholar
     

  • 12.

    Tierney, J. E. & Tingley, M. P. BAYSPLINE: a new calibration for the alkenone paleothermometer. Paleoceanogr. Paleoclimatol. 33, 281–301 (2018).


    Google Scholar
     

  • 13.

    Tierney, J. E., Malevich, S. B., Gray, W., Vetter, L. & Thirumalai, K. Bayesian calibration of the Mg/Ca paleothermometer in planktic foraminifera. Paleoceanogr. Paleoclimatol. 34, 2005–2030 (2019).


    Google Scholar
     

  • 14.

    Snyder, C. W. Evolution of global temperature over the past two million years. Nature 538, 226–228 (2016).

    CAS 

    Google Scholar
     

  • 15.

    Schneider von Deimling, T., Ganopolski, A., Held, H. & Rahmstorf, S. How cold was the Last Glacial Maximum? Geophys. Res. Lett. 33, L14709 (2006).


    Google Scholar
     

  • 16.

    Holden, P. B., Edwards, N., Oliver, K., Lenton, T. & Wilkinson, R. A probabilistic calibration of climate sensitivity and terrestrial carbon change in GENIE-1. Clim. Dynam. 35, 785–806 (2010).


    Google Scholar
     

  • 17.

    Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012).

    CAS 

    Google Scholar
     

  • 18.

    Annan, J. & Hargreaves, J. C. A new global reconstruction of temperature changes at the Last Glacial Maximum. Clim. Past 9, 367–376 (2013).


    Google Scholar
     

  • 19.

    Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K. & Severinghaus, J. Mean global ocean temperatures during the last glacial transition. Nature 553, 39–44 (2018).

    CAS 

    Google Scholar
     

  • 20.

    Friedrich, T. & Timmermann, A. Using Late Pleistocene sea surface temperature reconstructions to constrain future greenhouse warming. Earth Planet. Sci. Lett. 530, 115911 (2020).

    CAS 

    Google Scholar
     

  • 21.

    Masson-Delmotte, V. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 383–464 (IPCC, Cambridge Univ. Press, 2013).

  • 22.

    Brady, E. et al. The connected isotopic water cycle in the Community Earth System Model Version 1. J. Adv. Model. Earth Syst. 11, 2547–2566 (2019).


    Google Scholar
     

  • 23.

    Tierney, J. E. & Tingley, M. P. A. Bayesian, spatially-varying calibration model for the TEX86 proxy. Geochim. Cosmochim. Acta 127, 83–106 (2014).

    CAS 

    Google Scholar
     

  • 24.

    Malevich, S. B., Vetter, L. & Tierney, J. E. Global core top calibration of δ18O in planktic foraminifera to sea surface temperature. Paleoceanogr. Paleoclimatol. 34, 1292–1315 (2019).


    Google Scholar
     

  • 25.

    Tardif, R. et al. Last millennium reanalysis with an expanded proxy database and seasonal proxy modeling. Clim. Past 15, 1251–1273 (2019).


    Google Scholar
     

  • 26.

    Gray, W. R. et al. Wind-driven evolution of the North Pacific subpolar gyre over the last deglaciation. Geophys. Res. Lett. 47, e2019GL086328 (2020).


    Google Scholar
     

  • 27.

    DiNezio, P. N. et al. Glacial changes in tropical climate amplified by the Indian Ocean. Sci. Adv. 4, eaat9658 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Ford, H. L., Ravelo, A. C. & Polissar, P. J. Reduced El Niño–Southern Oscillation during the Last Glacial Maximum. Science 347, 255–258 (2015).

    CAS 

    Google Scholar
     

  • 29.

    Glushkova, O. Y. Geomorphological correlation of Late Pleistocene glacial complexes of Western and Eastern Beringia. Quat. Sci. Rev. 20, 405–417 (2001).


    Google Scholar
     

  • 30.

    Bartlein, P. J. et al. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Clim. Dynam. 37, 775–802 (2011).


    Google Scholar
     

  • 31.

    Roe, G. H. & Lindzen, R. S. The mutual interaction between continental-scale ice sheets and atmospheric stationary waves. J. Clim. 14, 1450–1465 (2001).


    Google Scholar
     

  • 32.

    Löfverström, M. & Liakka, J. On the limited ice intrusion in Alaska at the LGM. Geophys. Res. Lett. 43, 11030–11038 (2016).


    Google Scholar
     

  • 33.

    Hopcroft, P. O. & Valdes, P. J. How well do simulated Last Glacial Maximum tropical temperatures constrain equilibrium climate sensitivity? Geophys. Res. Lett. 42, 5533–5539 (2015).


    Google Scholar
     

  • 34.

    Porter, S. C. Snowline depression in the tropics during the Last Glaciation. Quat. Sci. Rev. 20, 1067–1091 (2000).


    Google Scholar
     

  • 35.

    Stute, M. et al. Cooling of tropical Brazil (5 °C) during the Last Glacial Maximum. Science 269, 379–383 (1995).

    CAS 

    Google Scholar
     

  • 36.

    Lea, D. W., Pak, D. K. & Spero, H. J. Climate impact of late Quaternary equatorial Pacific sea surface temperature variations. Science 289, 1719–1724 (2000).

    CAS 

    Google Scholar
     

  • 37.

    Masson-Delmotte, V. et al. EPICA Dome C record of glacial and interglacial intensities. Quat. Sci. Rev. 29, 113–128 (2010).


    Google Scholar
     

  • 38.

    Lee, J.-E., Fung, I., DePaolo, D. J. & Otto-Bliesner, B. Water isotopes during the Last Glacial Maximum: new general circulation model calculations. J. Geophys. Res. 113, D19109 (2008).


    Google Scholar
     

  • 39.

    Kurahashi-Nakamura, T., Paul, A. & Losch, M. Dynamical reconstruction of the global ocean state during the Last Glacial Maximum. Paleoceanography 32, 326–350 (2017).


    Google Scholar
     

  • 40.

    Amrhein, D. E., Wunsch, C., Marchal, O. & Forget, G. A global glacial ocean state estimate constrained by upper-ocean temperature proxies. J. Clim. 31, 8059–8079 (2018).


    Google Scholar
     

  • 41.

    Flato, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 741–866 (IPCC, Cambridge Univ. Press, 2014).

  • 42.

    PALAEOSENS Project Members Making sense of palaeoclimate sensitivity. Nature 491, 683–691 (2012); erratum 494, 130 (2013).

  • 43.

    Prentice, I. C., Jolly, D. & Biome 6000 Participants Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. J. Biogeogr. 27, 507–519 (2000).


    Google Scholar
     

  • 44.

    Köhler, P. et al. What caused Earth’s temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quat. Sci. Rev. 29, 129–145 (2010).


    Google Scholar
     

  • 45.

    Etminan, M., Myhre, G., Highwood, E. & Shine, K. Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing. Geophys. Res. Lett. 43, 12614–12623 (2016).

    CAS 

    Google Scholar
     

  • 46.

    Albani, S. et al. Aerosol-climate interactions during the Last Glacial Maximum. Curr. Clim. Change Rep. 4, 99–114 (2018).


    Google Scholar
     

  • 47.

    Shakun, J. D. Modest global-scale cooling despite extensive early Pleistocene ice sheets. Quat. Sci. Rev. 165, 25–30 (2017).


    Google Scholar
     

  • 48.

    Stap, L., Köhler, P. & Lohmann, G. Including the efficacy of land ice changes in deriving climate sensitivity from paleodata. Earth Syst. Dynam. 10, 333–345 (2019).


    Google Scholar
     

  • 49.

    Yoshimori, M., Yokohata, T. & Abe-Ouchi, A. A comparison of climate feedback strength between CO2 doubling and LGM experiments. J. Clim. 22, 3374–3395 (2009).


    Google Scholar
     

  • 50.

    Friedrich, T., Timmermann, A., Tigchelaar, M., Timm, O. E. & Ganopolski, A. Nonlinear climate sensitivity and its implications for future greenhouse warming. Sci. Adv. 2, e1501923 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    DiNezio, P. N. & Tierney, J. E. The effect of sea level on glacial Indo-Pacific climate. Nat. Geosci. 6, 485–491 (2013).

    CAS 

    Google Scholar
     

  • 52.

    Chan, D., Kent, E. C., Berry, D. I. & Huybers, P. Correcting datasets leads to more homogeneous early-twentieth-century sea surface warming. Nature 571, 393–397 (2019).

    CAS 

    Google Scholar
     

  • 53.

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    CAS 

    Google Scholar
     

  • 54.

    Hurrell, J. W. et al. The community earth system model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).


    Google Scholar
     

  • 55.

    Kageyama, M. et al. The PMIP4 contribution to CMIP6–Part 4: scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments. Geosci. Model Dev. 10, 4035–4055 (2017).

    CAS 

    Google Scholar
     

  • 56.

    Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450–487 (2015).


    Google Scholar
     

  • 57.

    Lawrence, D. M. et al. Parameterization improvements and functional and structural advances in version 4 of the community land model. J. Adv. Model. Earth Syst. 3, M03001 (2011).


    Google Scholar
     

  • 58.

    Zhu, J. et al. Reduced ENSO variability at the LGM revealed by an isotope-enabled Earth system model. Geophys. Res. Lett. 44, 6984–6992 (2017).


    Google Scholar
     

  • 59.

    Gettelman, A., Kay, J. E. & Shell, K. M. The evolution of climate sensitivity and climate feedbacks in the Community Atmosphere Model. J. Clim. 25, 1453–1469 (2012).


    Google Scholar
     

  • 60.

    Zhu, J., Poulsen, C. J. & Tierney, J. E. Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks. Sci. Adv. 5, eeax1874 (2019).


    Google Scholar
     

  • 61.

    Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).


    Google Scholar
     

  • 62.

    Meehl, G. A. et al. Effects of model resolution, physics, and coupling on Southern Hemisphere storm tracks in CESM1.3. Geophys. Res. Lett. 46, 12408–12416 (2019).


    Google Scholar
     

  • 63.

    Whitaker, J. S. & Hamill, T. M. Ensemble data assimilation without perturbed observations. Mon. Weath. Rev. 130, 1913–1924 (2002).


    Google Scholar
     

  • 64.

    Steiger, N. J., Hakim, G. J., Steig, E. J., Battisti, D. S. & Roe, G. H. Assimilation of time-averaged pseudoproxies for climate reconstruction. J. Clim. 27, 426–441 (2014).


    Google Scholar
     

  • 65.

    Hakim, G. J. et al. The last millennium climate reanalysis project: framework and first results. J. Geophys. Res. Atmos. 121, 6745–6764 (2016).


    Google Scholar
     

  • 66.

    Okazaki, A. & Yoshimura, K. Development and evaluation of a system of proxy data assimilation for paleoclimate reconstruction. Clim. Past 13, 379–393 (2017).


    Google Scholar
     

  • 67.

    Lauvset, S. K. et al. A new global interior ocean mapped climatology: the 1 × 1 GLODAP version 2. Earth Syst. Sci. Data 8, 325–340 (2016).


    Google Scholar
     

  • 68.

    Gray, W. R. & Evans, D. Nonthermal influences on Mg/Ca in planktonic foraminifera: a review of culture studies and application to the last glacial maximum. Paleoceanogr. Paleoclimatol. 34, 306–315 (2019).


    Google Scholar
     

  • 69.

    Houtekamer, P. L. & Mitchell, H. L. A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weath. Rev. 129, 123–137 (2001).


    Google Scholar
     

  • 70.

    Gaspari, G. & Cohn, S. E. Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc. 125, 723–757 (1999).


    Google Scholar
     

  • 71.

    Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models part I—a discussion of principles. J. Hydrol. 10, 282–290 (1970).


    Google Scholar
     

  • 72.

    Werner, M. et al. Glacial–interglacial changes of H218O, HDO and deuterium excess—results from the fully coupled Earth System Model ECHAM5/MPI-OM. Geosci. Model Dev. 9, 647–670 (2016).

    CAS 

    Google Scholar
     

  • 73.

    Atsawawaranunt, K. et al. The SISAL database: a global resource to document oxygen and carbon isotope records from speleothems. Earth Syst. Sci. Data 10, 1687–1713 (2018).


    Google Scholar
     

  • 74.

    Comas-Bru, L. et al. Evaluating model outputs using integrated global speleothem records of climate change since the last glacial. Clim. Past 15, 1557–1579 (2019).


    Google Scholar
     

  • 75.

    Hamill, T. M. Interpretation of rank histograms for verifying ensemble forecasts. Mon. Weath. Rev. 129, 550–560 (2001).


    Google Scholar
     

  • 76.

    Danabasoglu, G. et al. The CCSM4 ocean component. J. Clim. 25, 1361–1389 (2012).


    Google Scholar
     

  • 77.

    Park, T.-W., Deng, Y., Cai, M., Jeong, J.-H. & Zhou, R. A dissection of the surface temperature biases in the Community Earth System Model. Clim. Dynam. 43, 2043–2059 (2014).


    Google Scholar
     

  • 78.

    Taylor, K. et al. Estimating shortwave radiative forcing and response in climate models. J. Clim. 20, 2530–2543 (2007).


    Google Scholar
     

  • 79.

    Braconnot, P. & Kageyama, M. Shortwave forcing and feedbacks in Last Glacial Maximum and Mid-Holocene PMIP3 simulations. Phil. Trans. R. Soc. A 373, 20140424 (2015).


    Google Scholar